2. Hong, J. The State of Phishing Attacks. Communications of the ACM 2012, 55, 74. https://doi.org/10.1145/2063176.2063197.
3. Frauenstein, E.; Flowerday, S. Susceptibility to Phishing on Social Network Sites: A Personality Information Processing Model. Computers Security 2020, 94, 101862. https://doi.org/10.1016/j.cose.2020.101862. 689 4. Workman, M. Wisecrackers: A theory-grounded investigation of phishing and pretext social engineering threats to information security. Journal of the American Society for Information Science and Technology 2008, 59, 662–674. https://doi.org/10.1002/asi.20779. 5. Yang, R.; Zheng, K.;Wu, B.; Li, D.;Wang, Z.;Wang, X. Predicting User Susceptibility to Phishing Based on Multidimensional Features. Computational Intelligence and Neuroscience 2022, 2022.
6. Kumar, A. Phishing Email Detection using Machine Learning. INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 2024, 08, 1–5. https://doi.org/10.55041/IJSREM32276.
7. Habib, P.; Sharma, U.; Sethi, K. Phishing Detection with Machine Learning. International
Journal for Research in Applied Science and Engineering Technology 2022, 10, 1609–1615. https://doi.org/10.22214/ijraset.2022.48276.
8. A.Taha, M.; A.Jabar, H.; K/Mohammed, W. A Machine Learning Algorithms for Detecting Phishing Websites: A Comparative Study. Iraqi Journal For Computer Science and Mathematics 2024, 5, 275–286. https://doi.org/10.52866/ijcsm.2024.05.03.015. 9. Fan, Z.; Li, W.; Laskey, K.; Chang, K. Investigation of Phishing Susceptibility with Explainable Artificial Intelligence. Future Internet 2024, 16, 31. https://doi.org/10.3390/fi16010031. 10. Naseer, I. The role of artificial intelligence in detecting and preventing cyber and phishing attacks. European Journal of Engineering Science and Technology 2024, Vol. 11, 82–86.
11. Araneta, K.; Julasbi, N.; Syeddin.; Masbud, N.; Fathar.; Mohammad, A.; Mohammad, J.; Giner.; Nur, A.; Haniza.; et al. The Role of Artificial Intelligence Detecting and Preventing Phishing email. International Journal of Innovative Science and Research Technology 2024, 9, 1499–1502. https://doi.org/10.5281/zenodo.14565177. Tornblad, M.; Jones, K.; Siami Namin, A.; Choi, J. Characteristics that Predict Phishing Susceptibility: A Review. Proceedings of the Human Factors and Ergonomics Society Annual Meeting 2021, 65, 938–942. https://doi.org/10.1177/1071181321651330. 13. Sutter, T.; Bozkir, A.; Gehring, B.; Berlich, P. Avoiding the Hook: Influential Factors of Phishing Awareness Training on Click-Rates and a Data-Driven Approach to Predict Email Difficulty Perception. IEEE Access 2022, PP, 1–1. https://doi.org/10.1109/ACCESS.2022.3207272. 14. Jampen, D.; Gür, G.; Sutter, T.; Tellenbach, B. Don’t click: towards an effective anti-phishing training. A comparative literature review. Human-centric Computing and Information Sciences 2020, 10. https://doi.org/10.1186/s13673-020-00237-7. 15. Krishna, G.; Nagarjuna. Email Phishing Simulations Serve as a Valuable Tool in Fostering a Culture of Cybersecurity Awareness 2024. 10. https://doi.org/10.46501/IJMTST1002021. 16. Hadnagy, C. Social Engineering : the Science of Human Hacking; Indianapolis, In Wiley, 2018. 18. Arachchilage, N.A.G.; Love, S.; Beznosov, K. Phishing threat avoidance behaviour: An empirical investigation. Computers in Human Behavior 2016, 60, 185–197. https://doi.org/10.1016/j.chb.2016.02.065. 20. Downs, J.S.; Holbrook, M.B.; Cranor, L.F. Decision strategies and susceptibility to phishing. Proceedings of the second symposium on Usable privacy and security 2006, p. 79. https://doi.org/10..1145/1143120.1143131. 21. Sheng, S.; Holbrook, M.; Kumaraguru, P.; Cranor, L.F.; Downs, J. Who falls for phish? Proceedings of the SIGCHI Conference on Human Factors in Computing Systems 2010, pp. 373–382. https://doi.org/10.1145/1753326.1753383.
23. Alseadoon, I.; Othman, M.F.I.; Chan, T. What Is the Influence of Users’ Characteristics on Their Ability to Detect Phishing Emails? Lecture Notes in Electrical Engineering 2014, pp. 949–962. https://doi.org/10.1007/978-3-319-07674-4_89. 24. Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 2009, 339, b2535. https://doi.org/10.1136/bmj.b2535. 25. De Bona, M.; Paci, F. A Real World Study on employees’ Susceptibility to Phishing Attacks. Proceedings of the 15th International Conference on Availability, Reliability and Security 2020. https://doi.org/10.1145/3407023.3409179.
26. Ferreira, A.; Lenzini, G. An Analysis of Social Engineering Principles in Effective Phishing. 2015 Workshop on Socio-Technical Aspects in Security and Trust 2015. https://doi.org/10.1109/stast.2015.10. 27. Gordon,W.J.;Wright, A.; Aiyagari, R.; Corbo, L.; Glynn, R.J.; Kadakia, J.; Kufahl, J.; Mazzone, C.; Noga, J.; Parkulo, M.; et al. Assessment of Employee Susceptibility to Phishing Attacks at US Health Care Institutions. JAMA Network Open 2019, 2, e190393–e190393. https://doi.org/10.1001/jamanetworkopen.2019.0393. 28. Iuga, C.; Nurse, J.R.C.; Erola, A. Baiting the hook: Factors Impacting Susceptibility to Phishing Attacks. Human-centric Computing and Information Sciences 2016, 6. https://doi.org/10.1186/s13673-016-0065-2. 29. Gratian, M.; Bandi, S.; Cukier, M.; Dykstra, J.; Ginther, A. Correlating human traits and cyber security behavior intentions. Computers & Security 2018, 73, 345–358. https://doi.org/10.1016/j.cose.2017.11.015. 30. Okokpujie, K.; Kennedy, C.G.; Nnodu, K.; Noma-Osaghae, E. Cybersecurity Awareness: Investigating Students’ Susceptibility to Phishing Attacks for Sustainable Safe Email Usage in Academic Environment (A Case Study of a Nigerian Leading University). International Journal of Sustainable Development and Planning 2023, 18, 255–263. https://doi.org/10.18280/ijsdp.180127. 31. Liu, Z.; Zhou, L.; Zhang, D. Effects of Demographic Factors on Phishing Victimization in the Workplace. Pacific Asia Conference on Information Systems 2020, p. 75.
32. Jones, H.S.; Towse, J.N.; Race, N.; Harrison, T. Email fraud: The search for psychological predictors of susceptibility. PLOS ONE 2019, 14, e0209684. https://doi.org/10.1371/journal.pone.0209684. Shahbaznezhad, H.; Kolini, F.; Rashidirad, M. Employees’ Behavior in Phishing Attacks: What Individual, Organizational, and Technological Factors Matter? Journal of Computer Information Systems 2020, 61, 539–550. https://doi.org/10.1080/08874417.2020.1812134. 34. Li,W.; Lee, J.; Purl, J.; Greitzer, F.L.; Yousefi, B.H.; Laskey, K.B. Experimental Investigation of Demographic Factors Related to Phishing Susceptibility. Proceedings of the ... Annual Hawaii International Conference on System Sciences 2020. https://doi.org/10.24251/hicss.2020.274. 35. Williams, E.J.; Hinds, J.; Joinson, A.N. Exploring susceptibility to phishing in the workplace. International Journal of Human-Computer Studies 2018, 120, 1–13. https://doi.org/10.1016/j.ijhcs.2018.06.004. 36. Anwar, M.; He, W.; Ash, I.; Yuan, X.; Li, L.; Xu, L. Gender difference and employees’ cybersecurity behaviors. Computers in Human Behavior 2017, 69, 437–443. https://doi.org/10.1016/j.chb.2016.12.040. 37. Grilli, M.D.; McVeigh, K.S.; Hakim, Z.M.; Wank, A.A.; Getz, S.J.; Levin, B.E.; Ebner, N.C.; Wilson, R.C. Is This Phishing? Older Age Is Associated With Greater Difficulty Discriminating Between Safe and Malicious Emails. The Journals of Gerontology: Series B 2020, 76, 1711–1715. https://doi.org/10.1093/geronb/gbaa228. 38. Kleitman, S.; Law, M.K.H.; Kay, J. It’s the deceiver and the receiver: Individual differences in phishing susceptibility and false positives with item profiling. PLoS ONE 2018, 13, e0205089. https://doi.org/10.1371/journal.pone.0205089. 40. Rizzoni, F.; Magalini, S.; Casaroli, A.; Mari, P.; Dixon, M.; Coventry, L. Phishing simulation exercise in a large hospital: A case study. DIGITAL HEALTH 2022, 8, 205520762210817. https://doi.org/10.1177/20552076221081716.
41. Gavett, B.E.; Zhao, R.; John, S.E.; Bussell, C.A.; Roberts, J.R.; Yue, C. Phishing suspiciousness in older and younger adults: The role of executive functioning. PLOS ONE 2017, 12, e0171620. https://doi.org/10.1371/journal.pone.0171620. 42. Halevi, T.; Memon, N.; Nov, O. Spear-Phishing in the Wild: a Real-World Study of Personality, Phishing Self-Efficacy and Vulnerability to Spear-Phishing Attacks. SSRN Electronic Journal 2015. https://doi.org/10.2139/ssrn.2544742. 44. Parsons, K.; McCormac, A.; Pattinson, M.; Butavicius, M.; Jerram, C. The design of phishing studies: Challenges for researchers. Computers & Security 2015, 52, 194–206. https://doi.org/10.1016/j.cose.2015.02.008. 45. Burda, P.; Chotza, T.; Allodi, L.; Zannone, N. Testing the Effectiveness of Tailored Phishing Techniques in Industry and Academia. Proceedings of the 15th International Conference on Availability, Reliability and Security 2020. https://doi.org/10.1145/3407023.3409178. 46. Ebner, N.C.; Ellis, D.M.; Lin, T.; Rocha, H.A.; Yang, H.; Dommaraju, S.; Soliman, A.;Woodard, D.L.; Turner, G.R.; Spreng, R.N.; et al. Uncovering Susceptibility Risk to Online Deception in
47. Ribeiro, L.; Guedes, I.S.; Cardoso, C.S. Which Factors Predict Susceptibility to Phishing? an Empirical Study. Computers & Security 2023, p. 103558. https://doi.org/10.1016/j.cose.2023.103558. 48. Sarno, D.M.; Harris, M.W.; Black, J. Which Phish Is Captured in the net? Understanding Phishing Susceptibility and Individual Differences. Applied Cognitive Psychology 2023. https://doi.org/10.1002/acp.4075.
49. Alsharnouby, M.; Alaca, F.; Chiasson, S. Why Phishing Still works: User Strategies for Combating Phishing Attacks. International Journal of Human-Computer Studies 2015, 82, 69–82. https://doi.org/10.1016/j.ijhcs.2015.05.005. 50. Welk, A.K.; Hong, K.W.; Zielinska, O.A.; Tembe, R.; Murphy-Hill, E.; Mayhorn, C.B. Will the “Phisher-Men” Reel You In?: Assessing Individual Differences in a Phishing Detection Task. International Journal of Cyber Behavior, Psychology and Learning (IJCBPL) 2015, 5, 1–17. https://doi.org/10.4018/IJCBPL.2015100101.