Jan 29, 2020

Public workspaceLow Quantity single strand CAGE protocol

  • 1Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
Icon indicating open access to content
QR code linking to this content
Protocol CitationHazuki Takahashi, Hiromi Nishiyori-Sueki, Piero Carninci 2020. Low Quantity single strand CAGE protocol. protocols.io https://dx.doi.org/10.17504/protocols.io.bbwkipcw
License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License,  which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Protocol status: Working
We use this protocol in our group and it is working.
Created: January 29, 2020
Last Modified: January 29, 2020
Protocol Integer ID: 32428
Keywords: CAGE (Cap Analysis of Gene Expression), Transcription Starting Sites, Gene promoter, enhancer RNA,
Abstract
The Cap Analysis of Gene Expression (CAGE) is a powerful method to identify the Transcription Starting Sites (TSSs) of capped RNAs while simultaneously measuring transcript level. CAGE allows mapping at single nucleotide resolution all active promoters and enhancers. Large CAGE datasets have been over the years by individual labs and consortia, including the Encyclopedia of DNA Elements (ENCODE) and Functional Annotation Of the Mammalian Genome (FANTOM). These dataset constitute open resource for TSS annotations and gene expression analysis.
Here we provide a protocol for the most recent CAGE version of the method, which is called Low Quantity (LQ) single strand (ss) CAGE (LQ-)ssCAGE. The methods allow to profile samples starting from low quantity of RNAs. Samples may typically include cells cultured in small volumes to maximizing large scale perturbations, cellular compartments like nuclear RNAs or samples from developmental stages. The advantage of (LQ-)ssCAGE is to allow working with small samples and simultaneously avoiding PCR amplification: this step help to preserve exquisite quantification of expression. The protocol makes use of simplified steps, by loading single stranded cap selected cDNA. Further, is allows reducing the RNA amount down to 25 ng and to shorten preparation time (less than 3 days) and to prepare libraries parallel, increasing the number of samples that one operator can reasonably handle (up to 96 samples). By proper organization of the flow of libraries preparation, an operator could further scale up the throughput. The obtained libraries are suitable for sequencing by various Illumina sequencing platforms using indexed reads and original barcode identifiers.
Materials
<Materials and Reagents>
Product name Maker Cat. No.
Agencourt AMPure XP BECKMAN COULTER A63881
Agencourt RNAClean XP BECKMAN COULTER A63987
KAPA Library Quantification Kits (500 reactions)- KAPA BIOSYSTEMS KK4835
Illumina / ABI Prism®
Sodium periodate ACS Reagent Grade, MP Biomedicals 0215257725-25 g
5M Sodium Chloride, Molecular Biology Grade, Promega V4221
RNase One Ribonuclease, Promega M4261
Lithium chloride solution 8 M, for molecular biology, ≥99% SIGMA-ALDRICH L7026-100ML
Sodium acetate buffer solution,
BioXtra, pH 7.0±0.05 (25 °C), for molecular biology, 3 M, SIGMA-ALDRICH S2404-100ML
non-sterile; 0.2 µm filtered,
Sodium periodate ACS Reagent Grade, SIGMA-ALDRICH 311448-5G
DNA Ligation Kit <Mighty Mix>, TAKARA BIO INC. 6023
Ribonuclease H (RNase H) (20~60 U/µL), TAKARA BIO INC. 2150A
10 mM dNTP Mix, ThermoFisher SCIENTIFIC 18427013
Dynabeads M-270 Streptavidin, ThermoFisher SCIENTIFIC 65305
Ribonuclease H (2 U/µL), ThermoFisher SCIENTIFIC 18021014
RNaseZap RNase Decontamination Solution, ThermoFisher SCIENTIFIC AM9780
SuperScript III Reverse Transcriptase, ThermoFisher SCIENTIFIC 18080044
UltraPure 0.5 M EDTA, pH 8.0, ThermoFisher SCIENTIFIC 15575020
UltraPure DNase/RNase-Free Distilled Water, ThermoFisher SCIENTIFIC 10977015
Biotin (Long Arm) Hydrazide, Vector Laboratories SP-1100
0.5M EDTA (pH 8.0), Wako Pure Chemical Industries, 311-90075
10w/v% Polyoxyethylene(20) Sorbitan Monolaurate Solution, Wako Pure Chemical Industries, 161-24801
1 M Tris-HCl (pH 7.0), Wako Pure Chemical Industries, 311-90411 
1M Tris-HCl (pH 7.5), Wako Pure Chemical Industries, 316-90221
1M Tris-HCl (pH 8.5), Wako Pure Chemical Industries, 316-90405
3M Sodium Acetate (pH 5.2), Wako Pure Chemical Industries, 316-90081
Dimethyl Sulfoxide, Wako Pure Chemical Industries, 046-21981
Ethanol (99.5), Wako Pure Chemical Industries, 057-00456
2M NaOH, Wako Pure Chemical Industries, 194-05631 
Hybridization buffer HT1,   Illumina

<Equipment>    
Product name, Maker Cat. No.
Axygen 0.2 mL Polypropylene PCR Tube Strips CORNING, AXYGEN PCR-0208-CP-C
and Domed Cap Strips, 8 Tubes/Strip, 8 Domed Caps/Strip,
Clear, Nonsterile
Axygen 1.5 mL Maxymum Recovery Snaplock CORNING, AXYGEN MCT-150-L-C
Microcentrifuge Tube, Polypropylene, Clear, Nonsterile,
250 Tubes/Pack, 10 Packs/Case
Axygen 16 Well Polypropylene PCR Microplate, CORNING, AXYGEN PCR-16-C
Clear, Nonsterile
Axygen PCR 1 x 8 Strip Domed Caps, CORNING, AXYGEN PCR-02CP-C
Fit 0.2 mL PCR Tube Strips, Clear, Nonsterile,
X-Pierce Sealing Films, Sterile, EXCEL Scientific, Inc. XPS-25
10 µL (0.1 - 10 µL) LongReach Barrier tip, Sorenson BioScience, Inc. 38000T
10 µL (0.1 - 10 µL) Ultra G Barrier tip, Sorenson BioScience, Inc. 28200T
1000 µL (100-1000 µl) Barrier tip, Sorenson BioScience, Inc. 14200T
20 µL (1-20 µL) Barrier tip, Sorenson BioScience, Inc. 14210T
200 µL (1-200 µL) NX Barrier tip, Sorenson BioScience, Inc. 30550T
MicroAmp Optical 384-Well Reaction Plate with Barcode, ThermoFisher SCIENTIFIC 4309849
MicroAmp Optical Adhesive Film, ThermoFisher SCIENTIFIC 4360954
PIPETMAN Classic, P1000, GILSON F123602
PIPETMAN Classic, P2, GILSON F144801
PIPETMAN Classic, P20, GILSON F123600
PIPETMAN Classic, P200, GILSON F123601
MJ Research Tetrad PTC-225 Thermal Cycler, GMI, MJ Research 8252-30-1004
MINI CENTRIFUGE,  HARMONY (LMS) CFM-1000
PlateSpin II, KUBOTA  
Proline Plus Mechanical Pipettes, 8-ch, 0.5 - 10 µL, sartorius 728120
Proline Plus Mechanical Pipettes, 8-ch, 10 - 100 µL, sartorius 728130
Proline Plus Mechanical Pipettes, 8-ch, 30 - 300 µL, sartorius 728140
Vortex-Genie 2, Scientific Industries, Inc. SI-0286
miVAC DNA, SP Scientific, Genevac DNA-10000-G00
miVac rotor for micro plate, SP Scientific, Genevac DRS-00000-200
Dynabeads MPC-S (Magnetic Particle Concentrator), ThermoFisher SCIENTIFIC A13346
DynaMag-96 Side Skirted Magnet, ThermoFisher SCIENTIFIC 12027


<RT primer (for ssCAGE)>
name 5’ modification Sequence 3’ modification base
N6+TCT P TCTNNNNNN 9


<RT primers containing barcode (for LQ-ssCAGE)>
name 5’ modification Sequence Base
TCT_7nt_N15_#001 P TCTGATGCTCNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#002 P TCTTATGAGCNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#003 P TCTCGACGATNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#004 P TCTTAGTCACNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#005 P TCTCGTACTGNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#006 P TCTTACGTAGNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#007 P TCTAGACTCGNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#008 P TCTTCGCTGANNNNNNNNNNNNNNN 25
TCT_7nt_N15_#009 P TCTCGATCTGNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#010 P TCTTGTCACGNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#011 P TCTATGCACTNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#012 P TCTGACATCGNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#013 P TCTATCTAGCNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#014 P TCTTGTCGCANNNNNNNNNNNNNNN 25
TCT_7nt_N15_#015 P TCTCAGATCTNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#016 P TCTTCAGAGCNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#017 P TCTATACTGCNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#018 P TCTATCGTGANNNNNNNNNNNNNNN 25
TCT_7nt_N15_#019 P TCTGAGCTCTNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#020 P TCTTCTCGAGNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#021 P TCTCAGTGTCNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#022 P TCTGCTACGANNNNNNNNNNNNNNN 25
TCT_7nt_N15_#023 P TCTAGTACGCNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#024 P TCTGACTAGCNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#025 P TCTTACGCTANNNNNNNNNNNNNNN 25
TCT_7nt_N15_#026 P TCTGCTATAGNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#027 P TCTACACTGTNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#028 P TCTACATGTCNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#029 P TCTGCAGACTNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#030 P TCTTAGCGACNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#031 P TCTACAGTCGNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#032 P TCTGTATGACNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#033 P TCTCAGCAGTNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#034 P TCTACAGCTGNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#035 P TCTGCTGATANNNNNNNNNNNNNNN 25
TCT_7nt_N15_#036 P TCTTGTCGACNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#037 P TCTTGCGATANNNNNNNNNNNNNNN 25
TCT_7nt_N15_#038 P TCTAGTGTCANNNNNNNNNNNNNNN 25
TCT_7nt_N15_#039 P TCTATACGTCNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#040 P TCTCACTATGNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#041 P TCTTCACAGTNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#042 P TCTTACGCGTNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#043 P TCTCGACGTANNNNNNNNNNNNNNN 25
TCT_7nt_N15_#044 P TCTAGCATGCNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#045 P TCTATCGCGTNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#046 P TCTGATATGCNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#047 P TCTTAGCATCNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#048 P TCTGCTCATGNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#049 P TCTCTGATGCNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#050 P TCTGCATATGNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#051 P TCTGTCACATNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#052 P TCTCTAGCATNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#053 P TCTCACGTGTNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#054 P TCTCTAGTACNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#055 P TCTGATCGTANNNNNNNNNNNNNNN 25
TCT_7nt_N15_#056 P TCTCTAGTCGNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#057 P TCTGACACTGNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#058 P TCTAGCTCGANNNNNNNNNNNNNNN 25
TCT_7nt_N15_#059 P TCTGACTGCANNNNNNNNNNNNNNN 25
TCT_7nt_N15_#060 P TCTAGACGCTNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#061 P TCTCAGTCTGNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#062 P TCTTGACTGCNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#063 P TCTATCAGCGNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#064 P TCTCTCAGAGNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#065 P TCTTATGCACNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#066 P TCTTGCTACANNNNNNNNNNNNNNN 25
TCT_7nt_N15_#067 P TCTATGCGCANNNNNNNNNNNNNNN 25
TCT_7nt_N15_#068 P TCTTCGTGACNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#069 P TCTCGATACGNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#070 P TCTGCTAGCANNNNNNNNNNNNNNN 25
TCT_7nt_N15_#071 P TCTTAGCGTANNNNNNNNNNNNNNN 25
TCT_7nt_N15_#072 P TCTCTGACGANNNNNNNNNNNNNNN 25
TCT_7nt_N15_#073 P TCTTACGTCANNNNNNNNNNNNNNN 25
TCT_7nt_N15_#074 P TCTCATAGCTNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#075 P TCTTCGATCANNNNNNNNNNNNNNN 25
TCT_7nt_N15_#076 P TCTCATATCGNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#077 P TCTCTCGATANNNNNNNNNNNNNNN 25
TCT_7nt_N15_#078 P TCTAGTCAGTNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#079 P TCTTCGATAGNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#080 P TCTGCGTATANNNNNNNNNNNNNNN 25
TCT_7nt_N15_#081 P TCTATGTCAGNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#082 P TCTACGTCGANNNNNNNNNNNNNNN 25
TCT_7nt_N15_#083 P TCTCACTAGTNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#084 P TCTTCACGTGNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#085 P TCTGCTGTACNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#086 P TCTTACTGAGNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#087 P TCTCGATGCANNNNNNNNNNNNNNN 25
TCT_7nt_N15_#088 P TCTTGTCAGANNNNNNNNNNNNNNN 25
TCT_7nt_N15_#089 P TCTCTCTAGANNNNNNNNNNNNNNN 25
TCT_7nt_N15_#090 P TCTCGTACATNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#091 P TCTCTAGCTGNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#092 P TCTCGCTATANNNNNNNNNNNNNNN 25
TCT_7nt_N15_#093 P TCTTAGCTCANNNNNNNNNNNNNNN 25
TCT_7nt_N15_#094 P TCTGTATAGCNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#095 P TCTGTGACTCNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#096 P TCTAGCATCGNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#097 P TCTTGAGCATNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#098 P TCTCGTATAGNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#099 P TCTACTAGCGNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#100 P TCTACTGATGNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#101 P TCTGTACATGNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#102 P TCTTGACTCANNNNNNNNNNNNNNN 25
TCT_7nt_N15_#103 P TCTGATCTCANNNNNNNNNNNNNNN 25
TCT_7nt_N15_#104 P TCTCGACTGTNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#105 P TCTCAGTAGCNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#106 P TCTACTATGCNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#107 P TCTACGATCGNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#108 P TCTGATCACGNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#109 P TCTTGCATAGNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#110 P TCTCGTCATANNNNNNNNNNNNNNN 25
TCT_7nt_N15_#111 P TCTAGCTCAGNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#112 P TCTGTAGCACNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#113 P TCTCTATGCGNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#114 P TCTGACTACTNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#115 P TCTGATCGCTNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#116 P TCTCTGATAGNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#117 P TCTGTGCATANNNNNNNNNNNNNNN 25
TCT_7nt_N15_#118 P TCTGATGCATNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#119 P TCTACTGCAGNNNNNNNNNNNNNNN 25
TCT_7nt_N15_#120 P TCTTGATCACNNNNNNNNNNNNNNN 25


<5’ linkers>
name, 5’ modification, sequence, 3’ modification, base
5’adaptor N6, -, AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNN, P, 64
5’adaptor GN5, -, AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTGNNNNN, P, 64
5’adaptor down, P, AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGTGGTCGCCGTATCATT, P, 58

<3’ linkers >
name
sequence, 3’ modification, base
3’end adaptor up 01 NNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACATCACGATCTCGTATGCCGTCTTCTGCTTG, P, 67
3’end adaptor down 01 CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGA, - , 61
3’end adaptor up 02 NNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACCGATGTATCTCGTATGCCGTCTTCTGCTTG, P, 67
3’end adaptor down 02 CAAGCAGAAGACGGCATACGAGATACATCGGTGACTGGAGTTCAGACGTGTGCTCTTCCGA, - , 61
3’end adaptor up 03 NNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACTTAGGCATCTCGTATGCCGTCTTCTGCTTG, P, 67
3’end adaptor down 03 CAAGCAGAAGACGGCATACGAGATGCCTAAGTGACTGGAGTTCAGACGTGTGCTCTTCCGA, - , 61
3’end adaptor up 04 NNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACTGACCAATCTCGTATGCCGTCTTCTGCTTG, P, 67
3’end adaptor down 04 CAAGCAGAAGACGGCATACGAGATTGGTCAGTGACTGGAGTTCAGACGTGTGCTCTTCCGA, - , 61
3’end adaptor up 05 NNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACACAGTGATCTCGTATGCCGTCTTCTGCTTG, P, 67
3’end adaptor down 05 CAAGCAGAAGACGGCATACGAGATCACTGTGTGACTGGAGTTCAGACGTGTGCTCTTCCGA, - , 61
3’end adaptor up 06 NNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACGCCAATATCTCGTATGCCGTCTTCTGCTTG, P, 67
3’end adaptor down 06 CAAGCAGAAGACGGCATACGAGATATTGGCGTGACTGGAGTTCAGACGTGTGCTCTTCCGA, - , 61
3’end adaptor up 07 NNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACCAGATCATCTCGTATGCCGTCTTCTGCTTG, P, 67
3’end adaptor down 07 CAAGCAGAAGACGGCATACGAGATGATCTGGTGACTGGAGTTCAGACGTGTGCTCTTCCGA, - , 61
3’end adaptor up 08 NNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACACTTGAATCTCGTATGCCGTCTTCTGCTTG, P, 67
3’end adaptor down 08 CAAGCAGAAGACGGCATACGAGATTCAAGTGTGACTGGAGTTCAGACGTGTGCTCTTCCGA, - , 61
3’end adaptor up 09 NNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACGATCAGATCTCGTATGCCGTCTTCTGCTTG, P, 67
3’end adaptor down 09 CAAGCAGAAGACGGCATACGAGATCTGATCGTGACTGGAGTTCAGACGTGTGCTCTTCCGA, - , 61
3’end adaptor up 10 NNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACTAGCTTATCTCGTATGCCGTCTTCTGCTTG, P, 67
3’end adaptor down 10 CAAGCAGAAGACGGCATACGAGATAAGCTAGTGACTGGAGTTCAGACGTGTGCTCTTCCGA, - , 61
3’end adaptor up 11 NNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACGGCTACATCTCGTATGCCGTCTTCTGCTTG, P, 67
3’end adaptor down 11 CAAGCAGAAGACGGCATACGAGATGTAGCCGTGACTGGAGTTCAGACGTGTGCTCTTCCGA, - , 61
3’end adaptor up 12 NNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTTG, P, 67
3’end adaptor down 12 CAAGCAGAAGACGGCATACGAGATTACAAGGTGACTGGAGTTCAGACGTGTGCTCTTCCGA, - , 61
3’end adaptor up 13 NNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACAGTCAACAATCTCGTATGCCGTCTTCTGCTTG, P, 69
3’end adaptor down 13 CAAGCAGAAGACGGCATACGAGATTGTTGACTGTGACTGGAGTTCAGACGTGTGCTCTTCCGA, - , 63
3’end adaptor up 14 NNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACAGTTCCGTATCTCGTATGCCGTCTTCTGCTTG, P, 69
3’end adaptor down 14 CAAGCAGAAGACGGCATACGAGATACGGAACTGTGACTGGAGTTCAGACGTGTGCTCTTCCGA, - , 63
3’end adaptor up 15 NNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACATGTCAGAATCTCGTATGCCGTCTTCTGCTTG, P, 69
3’end adaptor down 15 CAAGCAGAAGACGGCATACGAGATTCTGACATGTGACTGGAGTTCAGACGTGTGCTCTTCCGA, - , 63
3’end adaptor up 16 NNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACCCGTCCCGATCTCGTATGCCGTCTTCTGCTTG, P, 69
3’end adaptor down 16 CAAGCAGAAGACGGCATACGAGATCGGGACGGGTGACTGGAGTTCAGACGTGTGCTCTTCCGA, - , 63
3’end adaptor up 18 NNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACGTCCGCACATCTCGTATGCCGTCTTCTGCTTG, P, 69
3’end adaptor down 18 CAAGCAGAAGACGGCATACGAGATGTGCGGACGTGACTGGAGTTCAGACGTGTGCTCTTCCGA, - , 63
3’end adaptor up 19 NNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACGTGAAACGATCTCGTATGCCGTCTTCTGCTTG, P, 69
3’end adaptor down 19 CAAGCAGAAGACGGCATACGAGATCGTTTCACGTGACTGGAGTTCAGACGTGTGCTCTTCCGA, - , 63
3’end adaptor up 20 NNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACGTGGCCTTATCTCGTATGCCGTCTTCTGCTTG, P, 69
3’end adaptor down 20 CAAGCAGAAGACGGCATACGAGATAAGGCCACGTGACTGGAGTTCAGACGTGTGCTCTTCCGA, - , 63
3’end adaptor up 21 NNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACGTTTCGGAATCTCGTATGCCGTCTTCTGCTTG, P, 69
3’end adaptor down 21 CAAGCAGAAGACGGCATACGAGATTCCGAAACGTGACTGGAGTTCAGACGTGTGCTCTTCCGA, - , 63
3’end adaptor up 22 NNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACCGTACGTAATCTCGTATGCCGTCTTCTGCTTG, P, 69
3’end adaptor down 22 CAAGCAGAAGACGGCATACGAGATTACGTACGGTGACTGGAGTTCAGACGTGTGCTCTTCCGA, - , 63
3’end adaptor up 23 NNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACGAGTGGATATCTCGTATGCCGTCTTCTGCTTG, P, 69
3’end adaptor down 23 CAAGCAGAAGACGGCATACGAGATATCCACTCGTGACTGGAGTTCAGACGTGTGCTCTTCCGA, - , 63
3’end adaptor up 25 NNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACACTGATATATCTCGTATGCCGTCTTCTGCTTG, P, 69
3’end adaptor down 25 CAAGCAGAAGACGGCATACGAGATATATCAGTGTGACTGGAGTTCAGACGTGTGCTCTTCCGA, - , 63
3’end adaptor up 27 NNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCACATTCCTTTATCTCGTATGCCGTCTTCTGCTTG, P, 69
3’end adaptor down 27 CAAGCAGAAGACGGCATACGAGATAAAGGAATGTGACTGGAGTTCAGACGTGTGCTCTTCCGA, - , 63

<Recipes>
1. 250 mM NaIO4
Dissolve 1 mg of Sodium periodate (ACS Reagent Grade) in 18.7 µL of RNase/DNase free water and keep in the dark. NOTE: The solution can be aliquoted to 50 µL and stored at 80 °C.

2. 100 mM Biotin (long arm) Hydrazide
Dissolve 50 mg of Biotin (long arm) Hydrazide in 1.345 mL of DMSO 1.345ml.
Biotin is packed in 50mg/tube.
NOTE: The solution can be aliquoted to 50 µL and stored at 80 °C.

3. LiCl buffer
Mix following materials and store at room temperature.

8M Lithium chloride solution 3.64 mL
1 M Tris-HCl (pH 7.5) 0.80 mL
10w/v% Polyoxyethylene (20) Sorbitan Monolaurate Solution 0.40 mL
0.5 M EDTA (pH 8.0) 0.16 mL
RNase, DNase –free water 3.64 mL

4. TE wash buffer
Mix following materials and store at room temperature.

RNase, DNase –free water 9.12 mL
1 M Tris-HCl (pH 7.5) 0.40 mL
10w/v% Polyoxyethylene (20) Sorbitan Monolaurate Solution 0.40 mL
0.5 M EDTA (pH 8.0) 0.08 mL

5. Release buffer
Mix following materials and store at room temperature.

RNase ONE 10x Reaction Buffer 100 µL
10w/v% Polyoxyethylene (20) Sorbitan Monolaurate Solution 1.0 µL
RNase, DNase –free water 899 µL

6. 1 x TE buffer
Mix following materials and store at room temperature.

1 M Tris-HCl (pH 8.0) 500 µL
0.5 M EDTA (pH 8.0) 100 µL
RNase, DNase-free water 49.4 mL

7. 0.1 M NaCl/TE buffer
1 M NaCl 500 µL
1 x TE buffer 4.5 mL

8. 2.5 µM 5’linker
a. Mix following solution and carry out the annealing reaction to generate 100 µM GN5 linker

1 mM 5’adaptor GN5 4 µL   
1 mM 5’adaptor down 4 µL
1 M NaCl 4 µL
1 x TE buffer 28 µL

<Annealing condition>
95 °C, 5 min: − 0.1 °C sec −1 down to 83 °C; 5 min at 83 °C; − 0.1 °C sec−1 down to 71 °C; 5 min at 71 °C; − 0.1 °C sec−1 down to 59 °C; 5 min at 59 °C; −0.1 °C sec−1, to 47 °C; 5 min at 47 °C; −0.1 °C sec−1, to 35 °C; 5 min at 35 °C; −0.1 °C s−1 to 23 °C; 5 min at 23 °C; −0.1 °C sec−1 to 11 °C, and then hold at 11 °C.

b. Mix following solutions and repeat the annealing reaction at step a. to generate 100 µM N6 linker

1 mM 5’adaptor N6 1 µL
1 mM 5’adaptor down 1 µL
1M NaCl 1 µL
1 x TE buffer 7 µL

c. Mix 40 µL of 100 µM GN5 linker from step a. and 10 µL of 100 µM N6 linker from step b.
d. Dilute 100 µM of mixed 5’linkers to 2.5 µM in 0.1 M NaCl/TE buffer. For instance, add 2.5 µL of 100 µM mixed linkers from step c to 97.5 µL of 0.1 M NaCl/TE buffer for 25 samples.

NOTE: 2.5 µM and 100 M mixed 5’linkers can be stored at -20°C.

9. 2.5 µM 3’ linker
a. Mix following solutions and carry out the annealing reaction at the step 8.a. to generate 100 µM of 3’ linker.

1 mM 3’end adaptor up 1 µL
1 mM 3’end adaptor down 1 µL
1 M NaCl 1 µL
1 x TE buffer 7 µL

b. Dilute 100 µM mixed linker from step a. to 2.5 µM in 0.1 M NaCl/TE buffer (see details at the step 8.d.).
Before start
RNAs should be treated in the RNAse free solutions, benches and equipments. We highly recommend to perform RNA quality check before starting (see detail at previously published paper RNA stability check).


Figure.1 Protocol Flow

Reverse Transcription (RT) to generate RNA/cDNA hybrids

single strand CAGE (ssCAGE)
When the amount of RNAs is more than1 µg, choose this RT protocol. Here is an example of 5 µg starting RNAs.
When the amount of RNAs is less than 1 µg, go to step 1.2.

a. Mix 5 µL of RNAs (1 µg/µL), 1 µL of RT primer (N6+TCT) and 4 µL of RNase free water in a tube.
Note
NOTE: Use 1.5 mL tube, 8 strip PCR tube or 16-96 wells plate depending on numbers of samples.

b. Incubate the RNA/primer mix from step a. at 65 °C for 5 min and immediately put on ice for 2 min.
c. Add the following components to the solution from step b. and carefully mix by pipetting on ice.

5 x First-Strand buffer 4 µL
10 mM dNTPs 1 µL
0.1 M DTT 1 µL
RNase free water 2 µL
SuperScript III Reverse Transcriptase 2 µL

d. Incubate the mixed solution (total 20 µL) at 25 °C for 30 sec, 55 °C for 30 min and keep 4 °C to generate RNA/cDNA hybrids.
e. Add 36 µL (1.8-folds) of RNACleanXP beads to 20 µL of RNA/cDNA hybrids from step d. and mix well by pipetting.
①. Incubate at room temperature for 5 min. Spin down and set the tube on magnetic bar for 5 min.
②. Discard the supernatant by pipette aspiration.
③. Wash the beads with 200 µL of 70% EtOH.
④. Set the tube on magnetic bar for 5 min.
⑤. Discard the supernatant by pipette aspiration.
⑥. Repeat step ③ ~ ⑤.
⑦. Discard the 70% EtOH completely by pipette aspiration.
⑧. Add 42 µL of RNase free water and mix by pipetting extensively (more than 60 times) to elute RNA/cDNA hybrids.
⑨. Incubate at room temperature for 5 min.
⑩. Spin down and set the tube on magnetic bar for 5min.
⑪. Transfer supernatant (~ 40 µL of the cDNA/RNA hybrids) to new tube.
Pause
Low Quantity single strand CAGE (LQ-ssCAGE)
When the amount of starting RNAs is less than 1 µg, choose this protocol.
Note

NOTE: The amount of RNAs in one tube should be 25 ng ~ 100 ng for the RT reaction. After RT, samples have each barcode and can be mixed up to 5 µg. For instance, if the starting RNA amount is 50 ng, 100 samples can be mixed. The number of mixed samples is depending on how much samples you have and how deep the samples should be sequenced. Here is an example of 48 mix samples from each 50 ng starting RNA.
CRITICAL: The mixed solution should be less than 5 µg. Otherwise the following linkers at step 9 and 11 are not enough for the linker ligation.


a. Mix 4 µL of 50 ng RNAs (12.5 ng/µL) and 1 µL of 1.25 mM RT primer containing barcode in a 96 wells plate by pipetting.
b. Incubate the RNA/primer mix form step a. at 65 °C for 5 min and immediately put on ice for 2 min.
c. Mix the following components (enzyme mix) on ice:

5 x First Strand buffer 2.0 µL
0.1 M DTT 0.5 µL
10 mM dNTPs 0.5 µL
RNase free water 1.0 µL
SuperScript III Reverse Transcriptase 1.0 µL
Total volume 5.0 µL

Note
NOTE: Make premix solution for 48 samples x 1.1 samples.


d. Add 5 µL of enzyme mix from premix solution at step c. to RNA/primer mix from step b. and carefully mix 10 times by pipetting on ice.
e. Incubate at 25 °C for 30 sec, 50 °C for 30 min and keep 4 °C to generate RNA/cDNA hybrids.
f. Mix samples by following steps.
①. Transfer each 10 µL of RNA/cDNA hybrids from step e. to one of new 1.5 mL tube (total volume is 480 µL).
②. Add 15 µL of RNase free water to the first 8 wells at the 96 wells plate from step , wash wells by pipetting, and transfer the 15 µL of the solutions to the next 8 wells.
③. Wash the 8 wells by pipetting and transfer 15 µL of the solutions to the next 8 wells.
④. Repeat step ②three times until the end of 8 wells and transfer all solutions (total volume is 120 µL (15 µL x 8 wells)) to the 1.5 mL tube from step ①(final volume is 600 µL).
⑤. Mix 600 µL of the solution from step ④by vortex, spin down and aliquot 200 µL in new two tubes of 1.5 mL tube (total 200 µL in 3 tubes of 1.5 mL tube).
Note
NOTE: Step f. is for the collection of remaining molecules to avoid losing any RNA/cDNA hybrids in the wells. We recommend to aliquot less than 200 µL per each 1.5 mL tube at step f.⑤due to the volume limitations of next RNAClean XP purification step.

g. Add 300 µL (1.8 -folds) of RNAClean XP beads to the 48 mixed RNA/cDNA hybrids in a 1.5 mL tube from step f.⑤, mix well by pipetting and then elute the mixed RNA/cDNA hybrids by following steps.
①. Incubate at room temperature for 10 min, spin down and set the 1.5 mL tube on magnetic bar for 5 min.
②. Discard the supernatant by pipette aspiration.
③. Wash the beads with 1.2 mL of 70% EtOH.
④. Set the 1.5 mL tube on magnetic bar for 5 min.
⑤. Discard the supernatant by pipette aspiration.
⑥. Repeat step ③~ ⑤ twice.
⑦. Discard the 70% EtOH completely by pipette aspiration.
⑧. Add 100 µL RNase free water and mix by pipetting extensively (more than 60 times) to elute RNA/cDNA hybrids.
⑨. Incubate at room temperature for 5 min.
⑩. Spin down and set the tube on magnetic bar for 5min.
⑪. Transfer 100 µL of the cDNA/RNA hybrids to new 1.5 mL tube.
⑫. Repeat step ⑧ ~ ⑪ twice (final volume is 200 µL).
⑬. Concentrate 200 µL of the cDNA/RNA hybrids solutions from step to around 40 µL by SpeedVac vacuum concentrator at 37 °C, and collect the solutions from 3 of 1.5 mL tubes to 1 of 1.5 mL tube (total volume is around 120 µL) and concentrate to 40 µL in the 1.5 mL tube at 37°C. The timing is around 2 h.
Note
CRITICAL: DO NOT DRY UP the cDNA/RNA hybrids solutions by the concentrating step . Check the sample volume during the concentration several times and adjust the final volume to 40 µL with RNase/DNase-free when the volume become less than 40 µL.

Pause
Oxidation to modify diol group of cap structure

a. Mix 40 µL of RNA/cDNA hybrid from step 1.1e. or 1.2g., 2 µL of 1 M NaOAc (pH 4.5) and 2 µL of 250 mM NaIO4 in a tube by 10 times pipetting.
Note
NOTE: 1.5 mL tube, 8-Strip PCR tube or16 wells plate can be used depending on how many samples should be prepared.

b. Incubate for 5 min on ice in dark by aluminum foil wrapping.
c. Add 16 µL of 1 M Tris-HCl (pH 8.5) to neutralize the solution and mix well by pipetting.
Purification

Add 108 µL (1.8 -folds) of RNACleanXP beads to 60 µL of oxidated RNA/cDNA hybrid from step 2, mix well by pipetting and then elute the 48 samples mixed RNA/cDNA hybrids by following steps.
①. Incubate at room temperature for 5min.
②. Spin down and set the tube on magnetic bar for 5 min.
③. Discard the supernatant by pipette aspiration.
④. Wash the beads with 200 µL of 70% EtOH
⑤. Discard the 70% EtOH.
⑥. Repeat step ④~ ⑤twice and discarded 70% EtOH completely.
⑦. Add 42 µL of RNase free water and mix by pipetting extensively (more than 60 times) to elute supernatant.
⑧. Incubate at room temperature for 5min.
⑨. Spin down and set the tube on magnetic bar for 5 min.
⑩. Collect 40 µL of the supernatant to new tube.
Pause
Biotinylation by the coupling reaction to the oxidized RNA/cDNA hybrids

a. Mix 40 µL of purified oxidized RNA/cDNA hybrid from step 3, 4 µL of 1M NaOAc (pH 6.3) and 4 µL of 100 mM Biotin (long arm) hydrazide by 10 times pipetting.
b. Incubate for 30 min at 40 °C.
c. Add 86.4 µL of RNACleanXP (1.8 -folds) to 44 µL of solution from step b, and perform purification by following step 3 ① ~ ⑩.
Note
NOTE: Biotinylation happens both 5’end of capped RNAs and 3’end of RNA (see Figure 2 at published protocol).

Pause
RNaseONE treatment to digest RNA of RNA/cDNA hybrids

a. Add 4.5 µL of 10 x RNaseONE buffer and 0.5 µL of RNaseONE to 40 µL of purified biotinylated RNA/cDNA hybrids from step 4 and mix 10 times by pipetting.
b. Incubate for 30 min at 37 °C.
c. Add 81 µL of RNACleanXP (1.8 -folds) to the solution from step b. and purify by the following step 3 ①~ ⑩.

Note
CRITICAL: This step is critical to digest uncompleted cDNA synthesis to the 5’ end of capped RNAs (See Figure 2 at published protocol).

Pause
Dynabeads M-270 Streptavidin beads preparation

a. Add 30 µL of Dynabeads M-270 Streptavidin to new 1.5ml tube, set on the magnetic bar for 5 min, and discard supernatant.
b. Wash the beads with 30 µL of LiCl buffer and discard supernatant.
c. Repeat step b. for 2 times.
d. Resuspend the beads in 35 µL of LiCl buffer.
CapTrap reaction

a. Add 35 µL of beads from step 6 to 40 µL of RNA/cDNA hybrids from step 5 and mix well by pipetting.
b. Incubate for 15 minutes at 37 °C and mix by pipetting at the time of 7 min.
c. Spin down and set the plate on the magnetic bar for 2 min and discard the supernatant by the pipette aspiration.
d. Add 150 µL of TE wash buffer and mix 60 times by pipetting. Spin down and set the plate on the magnetic bar for 2 min and discard the supernatant.
e. Repeat step d. for 3 times.
f. Add 35 µL of Release buffer to the beads and mix 60 times by pipetting.
g. Incubate for 5 min at 95°C for 5min and on ice for 1 min.
h. Spin down and set the tube on the magnetic bar for 2 min.
i. Transfer the supernatant containing CapTrapped cDNA from step h. to new 16 well plate.
j. Add 30 µL of Release buffer to the beads and mix well by pipetting, spin down, and set the tube on the magnetic stand for 2 min.
k. Transfer 30 µL of supernatant containing CapTrapped cDNA to new tube.
RNaseONE and RNaseH reaction to remaining RNAs
a. Add 2.9 µL of release buffer, 2 µL of RNaseONE and 0.1 µL of RNase H to 30 µL of CapTrapped cDNA from step 7 and mix 10 times by pipetting.
b. Incubate at 37°C for 30 min.
c. Add 126 µL of AMPureXP (1.8 -folds) to 33 µL of cDNA from step b. and perform purification by following step 3 ① ~ ⑩.
d. Dry up 40 µL of purified CapTrapped cDNA by the SpeedVac concentrator at 37°C for around 75 min.
e. Add 4 µL of RNase free water to the dried pellet.
Pause
5' Single Strand Linker Ligation

a. Incubate 4 µL of cDNA at 95 °C for 5 min and put on ice for 2 min.
b. Incubate 4 µL of 5’ linker at 55 °C for 5 min and put on ice for 2 min.
c. Mix 4 µL of 5’ linker, 4 µL of CapTrapped cDNA from step a. and 16 µL of Mighty Mix by pipetting (total volume is 24 µL).
d. Incubate at 16 °C for 16 h (overnight).
Purification to remove excess 5’ linkers and linker dimers

a. Add 46 µL of RNase free water and 126 µL of AMPureXP (1.8 -folds) to 24 µL of cDNA from step 9, mix well by pipetting.
b. Purify the solution by following step 3 ①~ ⑩.
c. Incubate at 95 °C for 5 min and immediately put on ice for 2 min.
d. Add 48 µLof AMPureXP beads (1.2 -folds) to 40 µL of cDNA and mix well by pipetting.
e. Repeat purification by following step 3 ① ~ ⑩.
f. Dry up 40 µL of cDNA by SpeedVac concentrator at 80°C for around 35 min.
g. Add 4 µL of RNase free water to the dried pellet.

Note
CRITICAL: It is important to perform heat inactivation and repeat purification step to remove non-ligated excess linkers during the purification step. Otherwise, these excess linkers can disturb library sequencing quality; excess linkers compete with the library to anneal Illumina flow-cells. In addition, 5’linker-3’linker dimers can be created at the next step 11.

Pause
3’ Single Strand Linker Ligation
a. Incubate 4 µL of cDNA at 95 °C for 5 min and put on ice for 2 min.
b. Incubate 4 µL of 3’ linker at 65 °C for 5 min and put on ice for 2 min.
c. Mix 4 µL of 3’linker, 4 µL of cDNA from step a. and 16 µL of Mighty Mix by pipetting.
d. Incubate at 30 °C for 4 h.
Note
NOTE: When you have more than 2 libraries with same barcode at RT primer and plan to mix libraries at the sequencing step 14, use different Index at the 3'linker.

Purification to remove excess 3’ linkers and linker dimers (final library)
a. Purify the solution from step 11 by following step 11a.-f.
b. Dissolve the pellet with 10 µL of RNase, DNase-free water.


Pause
Library QC
Quantify the concentration of library by KAPA Library Quantification Kit.
Pause
Sequencing
a. Mix the following components

Library (2250 amol) X µL
RNase, DNase-free water (19-X) µL
2N NaOH 1 µL
Total 20 µL

b. Incubate at room temperature for 5 min.
c. Put the tube on ice and add 20 µL of 1 M Tris-HCl (pH 7.0, pre-chilled) to neutralize.
d. Add 110 µL of HT1 buffer.
e. Transfer 120 µL of the denatured and diluted library to HiSeq2500.

Sequencing kit
  • ssCAGE: 50 bp Single Read sequencing.
  • LQ-ssCAGE: 50 bp Paired-End sequencing (see Figure 1 for the library structure).
Read 1: to read sequence information of cDNA
Read 2: to read sequence information of barcode in RT primer
Index 1: to read sequence information of index at the 3'linker